The AISC Seismic Provisions For Structural Steel Buildings

James O. Malley
Senior Principal, Degenkolb Engineers
and Chair, AISC TC9

Process of Developing the Provisions

AISC/NEHRP

- 1992 AISC Seismic (E. Popov, Chair)
 - Cooperation of AISC and BSSC established
 - Roles defined to minimize duplication of effort
AISC Review/Approval Process

- ANSI Consensus Process Procedures Being Followed
 - AISC now ANSI Accredited Organization
- AISC Seismic Provisions Updates
 - Supplement No. 1, February 15, 1999
 - Supplement No. 2, November 10, 2000

Building Code Adoption Process

- 1997 Seismic Provisions, through Supplement No. 1 included with Main LRFD Specifications into 2000 IBC
- 2002 NFPA also includes 2002 AISC Seismic
- 2006 IBC adopted 2005 AISC Seismic (ANSI/AISC 341-05) and AISC Main Spec (ANSI/AISC 360-05)
- Single Set of Unified National Seismic Provisions for Steel Buildings
Major Elements of 2005 Seismic Provisions

- Part I covers all Major Seismic Systems
 - Focus on SDC D, E and F
- Coordinated with ASCE 7-05
- Incorporate Post-Northridge Findings
 - FEMA/SAC Project Results (FEMA 350 Series) as Well as Other Efforts
- Composite Provisions from NEHRP Included (Part II)
- Note that Both Parts are in the “Unified” Format similar to the Main AISC Specification
 - Both LRFD and ASD included in one set of provisions

AISC Seismic Provisions

Scope Statement

- Intended Primarily for Building Structures
 - Also incorporated for “building like” non-building structures
 - Glossary clarifies that SLRS includes diaphragm chords and collectors, and all elements that resist seismic loads
- Required for SDC D, E and F
 - For SDC A, B and C, designer has choice
 - Use the Seismic Provisions with appropriate R factor
 - Use AISC LRFD/ASD Provisions with R=3
- Design Directly Linked to ASCE 7-05

AISC Seismic Provisions
Project Documentation Requirements

- New Section to Define Expectations of:
 - Design drawings and specifications
 - Shop Drawings
 - Erection Drawings
- Includes lists of information to be provided such as SLRS designation, connection detailing, welding requirements, protected zones, etc.
- Consistent with FEMA 353 and AWS D1.8

AISC Seismic Provisions

Material Specifications

- ASTM Specifications for Materials Employed
 - All major structural products incorporated
- Limited to 50 ksi, except for “elastic” columns
 - Relaxed to 55 ksi limit for OMF and OCBF
- Material Properties for Determination of Required Strength for Connections or Related Members Based on Expected Yield Strength
 - $R_y = R_y F_y$
 - $R_y = 1.5$ for A36 $1.5 \times 36 = 54$ ksi
 - $R_y = 1.1$ for A992 $1.1 \times 50 = 55$ ksi
 - $R_y = 1.1$ to 1.6 for other steels grades

AISC Seismic Provisions
Material Specifications

- Available Strength to consider both expected yield and tensile strengths
- R_t term added for tensile strength, with range of 1.1 to 1.3
 > Intent is to ensure expected inelastic response and ductile failure modes

Notch Tough Steel

- For Seismic Force Resisting System, Charpy V-Notch Toughness of 20 ft.-lbs. @ 70° F is required for:
 > ASTM A6 GROUPS 4 and 5, and for
 > ASTM A6 GROUP 3 with flanges > 1 1/2 inches thick
 > Plate material thicker than 2 inches
Connections - Bolted Joints

- Fully Tensioned HSB, Class A Slip-Critical, design for bearing strength.
- No sharing of load with welds in a joint or the same force component in a connection.
- Standard holes, or short slots perpendicular to line of force.
 - Oversized holes in one ply of brace diagonals allowed
 - Other conditions allowed if verified by testing
- Ductile limit - state controls design.
 - Yielding rather than fracture

AISC Seismic Provisions

Connections - Welded Joints

- New Appendix W with welded joint requirements beyond standard AWS D1.1
 - Consistent with FEMA 353
 - Being incorporated into new AWS D1.8
 - To be published later this year. Future editions of AISC Seismic will reference as appropriate
- WPS required / Approved by EOR
- Continuity plate welding and detailing specified

AISC Seismic Provisions
Connections - Welded Joints

- Filler metal CVN 20 ft.-lbs. @ -0°F for all welds in the seismic load resisting system (SLRS)
 - Reduction from -20°F in 2002
- Two level toughness required for designated Demand Critical Welds in SMF, IMF, OMF and EBF
 - based on FEMA recommendations
 - Consistent with previous testing
 - Appendix provides requirements for qualification

AISC Seismic Provisions

Welded Joints (cont.)

- Defines term “Protected Zone” where special care is required
 - Eliminates welding and other attachments in plastic hinge zones (shear studs, e.g.). Spot welds acceptable
 - OK outside hinge zones, but need to verify net section strength
 - Discontinuities caused by welding or other construction operations must be repaired.
 - Locations of Protected Zones defined for each system

AISC Seismic Provisions
Members

- Width-thickness ratios often stricter than main specification requirements
- Columns with high axial load to be checked for amplified seismic loading
- Column Splices
 - Strength requirement for partial penetration and fillet welded splices of 200% of required strength.
 - Beveled transitions not required where partial penetration welds are permitted.
 - Requirements for shear strength check of non-frame columns in all systems.
 - Only location in the provisions that refers to elements not part of the SLRS

AISC Seismic Provisions
Members (cont.)

• Column base design
 ➤ General intent to design column base for same forces that the elements connecting to the base are designed for.
 • Axial, shear and flexural strength requirements presented
 ➤ Interaction with concrete elements referred to ACI 318 Appendix D.
• H-pile requirements included

AISC Seismic Provisions

Special Moment Frames (SMF)

• Designs based on cyclic test results to 0.04 radians
 ➤ Appendix S provides test requirements
 • For either project specific or “public” tests
 ➤ Appendix P provides basis for "pre-qualification" of connections
 ➤ Connections designed in accordance with AISC 358 standard
• Shear connection capacity sufficient to develop force generated by fully plastic beam

AISC Seismic Provisions
(N) AISC Moment Connection Prequalification Standard

• Official title: “Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications”
 ➢ Developed by separate ANSI standards development committee (Ron Hamburger, Chair)

• Allows engineers to submit moment frame designs without producing connection test results
 ➢ First edition focuses on RBS and End Plate connections
 ➢ More connections to be included in future editions

• Adopted by 2005 AISC Seismic

AISC Seismic Provisions

SMF (Cont.)

• Panel Zone Design
 ➢ Intended to share yielding with beam
 ➢ Equation differs from FEMA 350

• Doubler plate configurations may be adjusted to avoid “k” area

• Continuity plates to match tested configurations

AISC Seismic Provisions
• SCWB Check required for SMF frames
 ➢ Attempting to avoid weak stories
 ➢ Exceptions provided
• Column splices pushed towards CJP

\[
\frac{\sum M_{pc}}{\sum M_{pb}} \geq 1.0
\]

AISC Seismic Provisions

• Lateral Bracing of Beams
 ➢ Nominal bracing required along length for both strength and stiffness based on main spec. equations
 ➢ Bracing at hinges (6%) required as well
 • But, not IN hinge zones!

AISC Seismic Provisions
IMF/OMF Requirements

- **Intermediate (IMF) provisions similar to SMF**
 - Tested capacity to 0.02 radians, beam shear, etc.
 - Other requirements (SCWB, panel zone, etc.) not as restrictive as SMF
- **Ordinary (OMF) provisions**
 - Allows calculation only, but for strength above $1.1 R_y M_p$
 - Specific welding and detailing requirements (access holes, e.g.)

STMF

- Concept Similar to EBF’s
- Ductile Special Segment (SS)
- Other Parts of the Truss Remain Elastic
- Both Cross-braced and Vierendeel configurations
- Span limited to 65 feet
- Depth limited to 6 feet
Special CBF Provisions

- \(KL/r < 4/\sqrt{E/F_y} \)
- Stricter b/t Ratios and Built-up Member Requirements
- Connection Requirements
 - Strength to Develop Tensile Strength
 - Ductility to Allow Buckling in Member or Gusset Plate
- Restrictions on Chevron and K-Bracing
- Stronger Column Splices Required

OCBF Provisions

- Limited use in high SDC’s
- For V or inverted V, \(KL/r < 4.23/\sqrt{E/F_y} \)
- Connection strength to develop brace tension capacity or amplified force
- Chevron bracing restrictions
- Tension Only Bracing Systems Allowed for Low Buildings (Less than Two Stories) and Penthouses
Elastic Beam Frame (EBF) Provisions

- Inelastic behavior limited to link beams
- Remainder of the system to remain elastic
- Best results for shear link elements, but local demands are higher than SMF’s
 - Extensive stiffening requirements

Elastic Beam Frame (EBF) Provisions (Cont.)

- Link-to-column connections
 - Require testing like SMF
 - Exception allowed
- Beam outside link, braces and columns designed for link capacity, including strain hardening
- Lateral bracing requirements similar to SMF
 - 6% at ends of links
 - Elsewhere, strength and stiffness as required in main spec.

AISC Seismic Provisions
BRBF Provisions

- BRBF Frames
 - SCBF development improves braced frame performance, but still limited by brace buckling
- Concept developed in Japan, with many applications
 - Hysteretic behavior similar to elastic - perfectly plastic
- Development of provisions in U.S.
 - Joint AISC/SEAOC effort
 - Approach similar to EBF
 - Analytical work indicates good performance
 - U.S. practice will lead to larger drifts
 - Included in 2003 NEHRP

AISC Seismic Provisions

BRBF Provisions (cont.)

- Steel core restrained from buckling
 - Braces tested for twice Design Story Drift
 - Appendix T specifies testing requirements
 - Brace strength addresses strain hardening and compression strength increase due to confining system
 - Connections designed for adjusted strength
- Chevron requirements less demanding than SCBF
- Column splices similar to SCBF

AISC Seismic Provisions
SPSW Provisions

- SPSW System
 - SPSW like plate girder design approach (tension field theory)
 - Can generate tremendous strength and stiffness as compared to CBF
- SPSW concept developed in Canada
 - NBCC Code provisions in place
 - UC Berkeley work as well
 - Provisions incorporated into 2003 NEHRP

SPSW Provisions (cont.)

- Panel Capacity Based on Simple Formula
 - Includes panel aspect ratio
 - L/h between 0.8 and 2.5
 - Panels with Openings to have boundary elements (BE)
 - Connection between web and BE’s for capacity
 - BE’s to develop panels. OMF style connections
 - Lateral bracing spacing like SMF.
 - Vertical BE’s also have bending stiffness requirements
Quality Assurance

- Detailed Appendix Q replaces general set of provisions in previous editions
- Consistent with FEMA 353 and AWS D1.8
- QA plan required. Covers both QA and QC.
- Documentation requirements listed
- Visual Inspection Points and Frequency Defined
 - For before, during and after welding or bolting by both QA and QC. Shown in tabular format
 - “Observe, Perform and/or Document”
- NDT locations and requirements specified. Both UT and Magnetic Particle incorporated. All results documented.

Part II - Composite Provisions

- Part II - Composite Construction Provisions
 - First Developed for 1994 NEHRP
 - Identifies Numerous System Options
 - Provides Detailed Requirements for Member and Connection Design
 - Modified and Made Consistent with Part 1
AISC Seismic Provisions

Composite CBF Connection
Composite Shear Wall Detail

Status and Upcoming Activities

- AISC 341 approved by reference in ASCE 7-05, Supplement No. 1
- Included in 2006 IBC
- AWS D1.8 completed and published
- Work is underway on 2010 Edition
 - Suggestions and comments welcomed and encouraged!

AISC Seismic Provisions
Status of Work on 2010 Edition

- Some re-formatting being done to make document more consistent with AISC 360
- Incorporating Composite Provisions directly into the document (No more Part I and Part II)
- Developing design/analysis provisions that will explicitly follow capacity design approach for ALL systems
- Updates to specific member and system requirements
- First internal ballots this year
- To be included in ASCE 7-10 and 2012 IBC

AISC Documents Related to Seismic Design

 - Available via download
- 2005 AISC Moment Connection Prequalification Standard (ANSI/AISC 358)
 - Available via download
- 2005 AISC Specification for Structural Steel Buildings (ANSI/AISC 360)
 - Available via download
- 2005 AISC Seismic Design Manual
 - Available for purchase

AISC Seismic Provisions
AISC Seismic Design Manual

• 1st Edition to Assist designers in applying AISC 341
 ➤ Practical guide similar to SEAOC SDC Series
• Common systems addressed with detailed design examples
 ➤ SMF, IMF, OMF
 ➤ CBF, EBF
 ➤ Other systems (BRBF and SPSW) discussed
 ➤ Both R=3 and R>3 designs addressed
• Special elements (chords and collectors) and issues (maximum force that can be delivered) addressed
• ONLY in LRFD format, though ASD is also allowed in AISC 341

AISC Seismic Provisions

Concluding Comments

• Unified Process for Steel Seismic Provision Development
 ➤ "Single Point of Responsibility" eliminates duplicative effort and minor differences that result in major confusion
 ➤ Allows rapid incorporation of new information
• WE WANT YOUR INPUT AND RECOMMENDATIONS FOR IMPROVEMENTS!